17. Triple Integrals Part 2, Change of Variables

In this lecture, we will discuss

e Triple Integrals in Cylindrical and Spherical Coordinates, Part 1
e Change of Variables in Multiple Integrals
o Change of Variables in Double Integrals
m Jacobian of the transformation
m  Application: Revisit the Change to Polar Coordinates in a Double Integral
o Change of Variables in Triple Integrals
m Jacobian of the transformation

®  Application: Revisit the Change to Spherical Coordinates in a Triple Integral



Spherical Coordinates

Recall from Lecture 7, we define the spherical coordinates (p, 6, ¢) of a point (see the figure below). The
relationships between the sperical coordinates and the rectangular coordinates are:

x = psingcosf y= psingsinf z=pcosqe

K

The spherical coordinates of a point

¢ In the spherical coordinate system the counterpart of a rectangular box is a spherical wedge
E={(p0,¢) |a<p<ba<t<fc<p<dl

wherea > 0 and 8 — a < 27.
e |t can be shown that dividing a solid into small spherical wedges always gives the same result as dividing it
into small boxes.

¢ So we divide E into smaller spherical wedges E;j; by means of equally spaced spheres p = pj, half-planes
6 = 0}, and half-cones ¢ = ¢}, as the figure below.



The above figure shows that E; ;. is approximately a rectangular box with dimensions Ap, piA¢ (arcof a
circle with radius p;, angle A¢), and p; sin ¢ Af (arc of a circle with radius p; sin ¢y, angle Af).

So an approximation to the volume of E;;, is given by

(Ap) x (piAg) x (p; sin ppAG) = p; sin ¢ ApAIAY

Thus, an approximation to a typical triple Riemann sum is

n

l m
Z f (pi sin ¢y, cos 6, p; sin ¢y sin 6, p; cos ¢ ) p? sin oL ApAOAP
i=1 j=1 k=1
Note this sum is a Riemann sum for the function

F(p,0,¢) = f(psin ¢ cos b, psin ¢sin b, pcos @) - p*sin ¢

Thus we have the following formula



Theorem. Formula for Triple Integration in Spherical Coordinates

[[[ s i

d B pb
:/ / / f(psin ¢ cos 8, psin ¢ sin 6, p cos ¢)p* sin pdpdfde

where E is a spherical wedge given by

E={(p,0,8) la<p<ba<i<P,c<¢<d}

Remark.

e Equation (1) states that we can convert a triple integral from rectangular coordinates to spherical
coordinates by writing

x = psingcosf y=psingsind z=pcose

using the appropriate limits of integration, and replacing dV’ by p? sin ¢dpdfde. This is explained by the
figure below.
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dv = Psinddpdg do

Volume Element in Spherical Coordinates

e More genearally, we can have the sperical regions like
E= {(P,9,¢) | a < 6 < /876 < (;b < dagl(07¢) < P < 92(0,¢)}

In this case the formula is the same as in Equation (1) except that the limits of integration for p are
g1 (97 ¢) and 92(07 ¢)

e Usually, spherical coordinates are used in triple integrals when surfaces such as cones and spheres form
the boundary of the region of integration.



Example 1. Use spherical coordinates to evaluate the triple integral /// z? + y2 + zde, where E is the
E
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Example 2. Use spherical coordinates to find the volume of the solid that lies above the cone z = /2 + y?

and below the sphere 22 + 32 + 2% = 2.
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Example 3. Evaluate the integral by changing to cylindrical coordinates:

2 pVA—a? 2
/ / / (m2 + yz) dzdydx
—2J Va—z? J \Ja2 1y

Below is a figure of the solid region of integration that might help with the calculation.
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Change of Variables in Multiple Integrals

Change of Variable in one-dimensional calculus

Recall in calculus, we have the change of the variable formula:

/f dm—/f ) (u)du

where z = g(u) and a = g(c),b = g(d).

/f(az dw—/ f(z —du (2)

Next, we are going to see the generalization of equation (2) to higher dimensions (these are Equation (7) and
(8)).

And we can rewrite it as

Change of Variable in double integrals
e A change of variables can also be used in double integrals.
e One example is the conversion to polar coordinates.
e The new variables r and 6 are related to the old variables z and y by the equations
x=rcosf y=rsinb

and the change of variables formula can be written as (Lecture 15)

// f(z,y)dA = // f(rcos @, rsinf)rdrdd,

where §'is the region in the rf-plane that corresponds to the region R in the zy-plane.

e Generally, we consider a change of variables that is given by a vector-valued function 7" from the uv-plane
to the zy-plane:

T(u,v) = (z,y)
where  and y are related to u and v by the equations
z = g(u,v) y=h(u,v) (3)
or, as we sometimes write,
z=z(u,v) y=y(u,v)

e We usually assume that T'is a C'! function, which means that g and h have continuous first-order partial
derivatives.



e If T'is a one-to-one transformation, then it has an inverse transformation T ~! from the zy-plane to the
uv-plane and it may be possible to solve Equations (3) for u and v in terms of z and ¥ :

u=G(z,y) v=H(z,y)

e A natural question to ask is how a change of variables affects a double integral.

e To answer this question, we look at a small rectangle S'in the uv-plane whose lower left corner is the point
(ug,vg) and whose dimensions are Au and Aw in the following figure.
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e The image of S'is a region R in the zy-plane, one of whose boundary points is (29, y0) = T (ug, vo).
e The vector
r(u,v) = g(u,v)i+ h(u,v)j
is the position vector of the image of the point (u, v).

e The equation of the lower side of S is v = vy, whose image curve is given by the vector function r (u, vy).

 The tangent vector at (2, yo) to this image curve is

. . ox . oy .
ry = gu (Wo, Vo)l + hy (ug,v9)j = %1 + Bu
e Similarly, the tangent vector at (x, yo) to the image curve of the left side of S (namely, u = wug ) is
: N 8.’13 . 8y .
ry = go (w0, v0)i + hy (uo,v0)j = 2 i+ ==



e We can approximate the image region R = T'(.S) by a parallelogram determined by the secant vectors
a=r(up + Au,vg) — r (ug,v9) b =r(ug,vo+ Av) —r (ug,v0)

as described in the following figure.

"?\ UI‘-O )VO*A\])

T (U V)

T (UetAU, Vo)

e Note

. 1 (ug + Au,vg) — r (ug, Vo)
r, = lim
Au—0 Au

e Thus

r (uo + Au,vg) — r (ug,v9) ~ Aur,

r (ug, vo + Av) — r (ug,vo) = Awr,
e Therefore, we can approximate R by a parallelogram determined by the vectors Aur, and Avr, in the

following figure.
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e Thus we can approximate the area of R by the area of this parallelogram, that is,

|(Aur,) x (Awvr,)| = |ry X ry|Aulv (4)



e Computing the cross product, we get

e A T
== = 0| _|O0u Oul|y. _|Ou Ov
Iy X T, = gu gu = @ @ k = @ @ k
S A Ov Ov Oou Ov
ov Ov

e Notice the matrix inside of the determinant above is the matrix D T, the derivative of the function of 1.

e The above determinant is called the Jacobian determinant of 7T'. Note sometimes it is also called the
Jacobian in some references.

Definition Jacobian determinant of a Function 7' : R? — R?

The Jacobian determinant of the function 7" given by = g(u, v) and y = h(u,v) is

Ox Oz
O(z,y) du  Ov Ox 0y Ox Oy
= det(DT -7 777 5
0(u,v) (DT) = Oy Oy Ou Ov  Ov Ou (5)
o
e Then using Equation (4), we have an approximation of the area of R:
0
At~ | 2@ | Auny (6)
O(u, v)

where the Jacobian determinant is evaluated at (ug, vg).

e Next, we consider the image of a small rectangles S;; and call their images in the zy-plane R;;asinthe
following figure:

* Applying the approximation (6) to each R;;, we approximate the double integral of f over RAs:

n
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f(g (i, v;), b (ug,v;)) ‘%‘Aum

i=1 j=
where the Jacobian determinant is evaluated at (u;, v;).

¢ Notice that the double sum is a Riemann sum for the integral

//S f(g(u,v), h(u,v)) ‘ gzz: gg ‘dudv




The above discussion implies the following theorem:
Theorem 1 Change of Variables in a Double Integral

Let D and D* be elementary regions in R2 and let T : D* — D be a C'!, one-to-one map such that
T (D*) = D. For any integrable function f : D — R,

[ s [[ stotuo)vtuon| 552

is the Jacobian determinant of T'.

dA*, (7)

Application: Revisit the Change to Polar Coordinates in a Double Integral

e We will show that the formula for integration in polar coordinates is a special case of formula (7).

e Here the function 1" from the rf-plane to the zy-plane is given by
z =g(r,0) =rcosf y=h(r,0) =rsiné

and the geometry of the transformation is shown below.
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e T'maps an ordinary rectangle in the rf-plane to a polar rectangle in the zy-plane.

e The Jacobian determinant of T’ is

o o
oz,y) |or 06|

a(r,0) |0y Oy
or 00

cos —rsinf
=rcos’f+rsin?f=r>0

sinf rcosf



e Thus Theorem 1 implies

//Rf(w,y)da:dy:/Lf(rcos@,rsin@)‘g((i:z)) drd®

B b
=/ / f(rcos 0, rsinf)rdrdf

which is the same as the formula in Lecture 15.

Change of Variables in Triple Integrals

There is a similar change of variables formula to Theorem 1 for triple integrals.

Let T' be a transformation that maps a region .S in uvw-space onto a region R in zyz-space by equations
z=g(u,v,w) y=h(u,v,w) z=k(u,v,w)

The Jacobian determinant of 1 is the following 3 X 3 determinant:
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Similar to Theorem 1, we have the following formula for the change of variables in triple integrals:

[ e~ [ st B2



Example 5. Compute the Jacobian for the change of variables into spherical coordinates:
x = psingcosh, y=psingsinh, z= pcos¢
Then use Formula (8) to derive the formula for triple integration in spherical coordinates.

Solution.
We compute the Jacobian determinate as follows:

o ) singcosf —psingsinf pcos¢pcosf
x,Y, 2 i . . .
AB%E _ singsinf psingcosf pcospsinb

%p,9,¢) cos ¢ 0 —psin ¢

Expanding the determinate in terms of the 3rd row, we get

singcosf —psingsind
sin¢sinf  psin¢cosf

—psin¢sinf pcosocosb
psingcosf pcos¢psind

= cos ¢ (—p2 sin ¢ cos ¢ sin? @ — p? sin ¢ cos ¢ cos? 9)
—psin ¢ (p sin? ¢ cos® 0 + psin® ¢ sin® 9)

— psin

cos ¢

Since 0 < ¢ < 7, we have sin ¢ > 0. Therefore

‘ oz, y, 2)

= |—p?sin | = p%sin
5o 0,)| | Smél=pising

and Formula (8) implies
/// f(m,y,z)dV:/// f(psin ¢ cos B, psin ¢ sin @, p cos ¢)p* sin pdpdfde
R S

which is equivalent to Formula (1).



